Improved Kernel Learning Using Smoothing Parameter Based Linear Kernel
نویسندگان
چکیده
Kernel based learning has found wide applications in several data mining problems. In this paper, we propose a modified classical linear kernel using an automatic smoothing parameter (Sp) selection compared with the existing approach. We designed the Sp values using the Eigen values computed from the dataset. Experiment results using some classification related benchmark datasets reveal that the improved linear kernel method performed better than some of the existing kernel techniques.
منابع مشابه
Improved Kernel Based Learning Using Smoothing Parameter Based Linear Kernels
Kernel based learning has already found wide applications to solve several data mining problems. In this paper, we proposed an improved linear kernel with automatic smoothing parameter (Sp) selection compared to the classical approach. Experiment results using some classification related benchmark datasets reveal that the improved linear kernel performed better than some existing kernel techniq...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملData-driven calibration of linear estimators with minimal penalties
This paper tackles the problem of selecting among several linear estimators in nonparametric regression; this includes model selection for linear regression, the choice of a regularization parameter in kernel ridge regression or spline smoothing, and the choice of a kernel in multiple kernel learning. We propose a new algorithm which first estimates consistently the variance of the noise, based...
متن کاملBayesian multiscale smoothing in supervised and semi-supervised kernel discriminant analysis
In kernel discriminant analysis, it is common practice to select the smoothing parameter (bandwidth) based on the training data and use it for classifying all unlabeled observations. But this method of selecting a single scale of smoothing ignores the major issue of model uncertainty. Moreover, in addition to depending on the training sample, a good choice of bandwidth may also depend on the ob...
متن کامل